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ABSTRACT 
The High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter And Far Infrared 
Experiment (SAFIRE) will use identical Adiabatic Demagnetization Refrigerators (ADR) to cool their 
detectors to 200mK and 100mK, respectively. 

In order to minimize thermal loads on the salt pill, a Kevlar’ suspension system is used to hold it in place. 
An innovative, kinematic suspension system is presented. The suspension system is unique in that it 
consists of two parts that can be assembled and tensioned offline, and later bolted onto the salt pill. 

1. INTRODUCTION 
The High-Resolution Airborne Wide-band Camera (HAWC)[ 11 and the Submillimeter And Far InfraRed 
Experiment (SAFIRE)[2] are both far-infrared astronomical instruments being built to study star formation, 
protoplanetary disks, and interstellar gas and dust. Both instruments are being built for the Stratospheric 
Observatory For Infrared Astronomy, an airplane-based telescope. Both will employ microcalorimeter 
bolometers developed at NASA’s Goddard Space Flight Center (GSFC). HAWC and SAFIRE require the 
detectors to be cooled to 200mK and 1 0 0 6 ,  respectively, but both will use Adiabatic Demagnetization 
Refrigerators (ADRs) as the final stage cooler. As the GSFC was making the ADR for both instruments, a 
single design that would work for both was pursued. 

2. SOME BACKGROUND: ADR’S, KEVLAR, AND KINEMATIC MOUNTS 

The HAWC ADR is shown in Fig. 1. Before describing the design of this suspension system, some 
background on ADRs, Kevlar, and kinematic mounts will be presented. 

Fig. 1: The HAWC ADR 
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2.1 Adiabatic Demagnetization Refrigerators 

For a full description of the thermal design of this ADR, please refer to Tuttle [3]. In brief, an ADR 
consists of a paramagnetic salt pill mounted in the core of a powerful electromagnet, and a heat switch for 
thermally connecting the salt pill to and disconnecting it from the helium bath as required. 

The salt, in this case ferric ammonium alum, is typically grown from solution inside a cylindrical container. 
The salt and its container are collectively called the “salt pill”. 

When the magnet is energized, the salt molecules align themselves with the magnetic field, increasing the 
temperature. At this point, the heat switch is closed, allowing the liquid helium bath to cool the magnetized 
salt pill. SAFIRE and HAWC have a gas-gap heat switch, where a gas is either admitted into or removed 
from a narrow gap, enabling or preventing heat flow. 

After the salt pill has cooled to the temperature of the bath, the heat switch is opened and the magnet is 
slowly de-energized. The molecules in the salt are free to randomly reorient themselves, and the salt pill 
temperature drops well below the bath temperature. 

The mount between the salt pill and the main structure is one of the ADR’s principle heat loads, so a mount 
design with a high thermal resistance will increase its hold time and thermal performance. Salt pill 
vibrations are converted into heat, so it is also important that the mount be rigid. Additionally, salt pills are 
generally fragile structures, so the ideal mount should not put the pill into tension or bending as part of its 
load path. The HAWC kinematic Kevlar suspension system meets the isolation, stiffness, and preloading 
requirements, and has several advantages over existing designs. 

2.2 Kevlar 

Kevlar has a very high ratio of stiffness to thermal conductivity at cryogenic temperatures. Kevlar fibers 
will only support a tensile load, in contrast to fiberglass epoxy, so a tensile structure must be used. Kevlar 
fibers are composed of highly ordered, rod-like polymer molecules. This gives them their tremendous 
stiffness - 3 times that of steel for the same weight. This property, however, causes the fibers to break 
easily around a sharp bend. The implication of this for any tensile structure using Kevlar is that it should 
not be knotted, and it has a minimum allowable bend radius. Typical solutions for attaching to the ends of 
Kevlar are gluing the ends of the fibers into drilled-out screws or similar fittings, or wrapping the fibers 
around pulleys, with capstans for tensioning. Another approach, used in this design, was to form the 
Kevlar fibers into a large loop, gluing the two ends together using Stycast (Ref.). The loop was then 
twisted into a figure-8 and doubled back upon itself several times, forming a smaller, thicker diameter loop, 
with all but a fraction of the fibers continuous. This loop was then strung between two .64 cm (.250) 
diameter rollers, which formed the attachment points to the rest of the structure. 

2.3 Kinematic mounts 
A mount is said to be kinematic if it constrains all 6 possible degrees of freedom (DOF)(translation in X, Y, 
Z, rotation about X, Y, Z) only once. The conceptually simplest way to build up a kinematic mount is to 
use six 1-degree of constraint (DOC) mounts (Fig. 2), arranged so they compliment each other and 
collectively lock out all 6 DOF. A 1-DOC mount can also be made up out of tensile elements, such as 
Kevlar fibers (Fig. 3). 
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Fig. 2: A 1-DOC mount made up of two ball 
joints. Relative motion between the bases is 
a~~owed in all degrees o f f ~ ~ d o m  except along 
the axis of the connecting link. 

Fig. 3: A 1-DOC tensile mount. The arrows indicate the 
direction of constraint. The rope cannot resist 
compression, yet this mount resists motion along the 
rope's length with the tensile modulus of the rope in both 
directions, as long as the applied load does not exceed the 
preload applied by the spring. Transverse deflections only 
stretch the rope a small amount compared to the deflection, 
so the perceived stifhess in those directions is much 
smaller. Transverse directions can therefore be considered 
degrees of freedom, for small motions. 

Fig. 4 shows a 3-2-1 kinematic mount. The three constraints at point A prevent translations in X, Y, and Z, 
but all rotations about A would be possible. The additional constraints at B prevent rotations about Z and 
Y, and the constraint at C prevents rotations about X. If the mounted object were to change its dimensions, 
due to differential temperature contraction with the base, or small machining errors, for example, point A 
would remain fixed, andpoints B and C would move freely towards or away from A along their 
unconstrained directions. It is this allowed free motion which is the key to making a mount kinematic. If 
another constraint were added, for example an additional X-direction constraint at B, then the distance 
between points A and B would be fixed, and a dimension change in the object would produce a stress. 

A different type of mount, the 2-2-2 kinematic mount, is shown in Fig. 5. The analysis is not as obvious as 
for the 3-2-1 mount, but it will yield to scrutiny. The angles between the three constrained directions in the 
X-Y plane are typically chosen to be 120°, for symmetry, but they don't need to be, as will be discussed 
below. The important thing is that the normals to those constraints intersect in a single point, otherwise a 
uniform dimensional change in the mounted object will result in a rotation. 
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Fig. 4: A 3-2-1 kinematic mount. Arrows 
indicate directions of constraints attached at A, 
B and C. Notice that no constraints point 
towards each other. 

Fig. 5: A 2-2-2 kinematic mount. The constraints 
at A, B and C which lie in the plane have normals 
which intersect at point 0. 

Referring to Fig. 5, the two constraints at C prevent the mounted object from translating in X or Z. The 
addition of the Z-direction constraints at A and B prevents rotations about X and Y. The way this mount 
constrains Y translations is more subtle: the Y-components of the (X-Y plane) constraints at A and B add 
up to constrain it. The stiffness of a 1 DOC mount falls off as cos2 of the angle one pulls on it with. In the 
symmetric 120"-120"-120" mount presented here, the angle between both of the X-Y plane constraints (at 
A and B) and the Y axis is 30", so the perceived lateral stiffness of the mount in Y is (2) x ( .75) = 1.5 times 
the on-axis stiffness of an individual mount. In the X-direction, the angle is 60°, so the contribution of the 
mounts at A and B is (2) x (.25) = .5. Add to this the stiffness of the mount at C, which is also resisting in 



X, and one gets the same result of 1.5 times the on-axis stiffness of an individual mount, so the X-Y plane 
stiffness of the 2-2-2 kinematic mount is symmetric. Sometimes, the angles between the 2-DOC mounts 
are chosen to be something other than 120°, for packaging reasons, for example. This is fine, as long as the 
normals to the constraint directions intersect at a point. The symmetry in the stiffness will be sacrificed. 
This cannot be taken too far, however: if the angles are changed so that two of the X-Y plane DOCS come 
close to parallel, the constraints become redundant. A DOF of the system then starts to become 
unconstrained, and the natural frequency in that mode goes down. 

3. THE HAWC AND SAFIRE ADR SUSPENSION SYSTEM 

The HAWC and SAFIRE ADR kinematic suspension system (Fig. 6) consists of 2 parts: the top end and 
the bottom end. The top end constrains translation in X, Y and Z as well as rotation about the axis of the 
salt pill, but it allows the salt pill to rotate like a pendulum about the other two axes. The bottom end 
constrains these two rotations by not letting the end of the salt pill move linearly. In this fashion, every 
motion of the salt pill is uniquely constrained. 

Salt pill 

Fig. 6: The schematic configuration of the HAWC and SAFIRE ADR salt pill suspension system. 
The arrows indicate the directions of the constraints. 

The entire assembly is designed to drop into a cavity in the exterior of the helium tank. The bottom of the 
ADR cavity has a spindle which mates with a ring in the bottom end suspension. The walls of this cavity 
are therefore a critical part of the structure of the ADR. 

3.1 The Top End 
The design of the top end suspension system borrows heavily from Cui [4] and McCammon [ 5 ] .  Figs. 
7,8,and 9 show the general configuration, and Fig. 10 shows a schematic diagram. 



Suspended Housing 
mount plate 

Fig 7: The top end suspension system. 
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Fig. 8: Suspension system top end viewed from the side (left), and the same view with the housing 
removed, showing the Kevlar loop arrangement (right). 
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Fig. 9: Suspension system top end viewed from the front (left), and with the housing removed (right). The 
lines of action of the positioning loops intersect at the tensioning loop’s rotation axis (out of the page in this 
view), yielding an intrinsically stable configuration. 
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Fig. 10: A schematic of the top end suspension (left), and a similar view of the Kevlar straps with the 
housing removed (right). The tensioning spring only serves to keep the four locating straps preloaded. 
The salt pill is free to rotate about X and Y , but is constrained from translating in X, Y, and Z, and from 
rotating about Z. 

The tensile elements are made from Kevlar which is formed into loops that are fitted around dowels (Fig. 
9). To make a loop, a length of unbraided Kevlar fibers is first spliced into a larger loop using Stycast 
epoxy. The loop is then twisted into a figure-8 and folded back on itself several times, creating a smaller 
loop where only a fraction of the fibers have a splice. 
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There are four tensile loops which locate the salt pill mounting surface, and one loop which tensions them 
all (Fig. 10). The positioning loops are rigidly mounted on both ends, and the tensioning loop has a 
tensioning spring on one end. 

When Z axis loads are applied, the four locating loops share the load equally. The loop angles are chosen 
so that the projections onto either the X-Z or Y-Z planes are always 90". The angle that the loop makes 
with the Z axis is therefore 54.7' (Fig. 6) .  The perceived stiffness of one loop is co~~(54.7') = .33 times the 
on-axis stiffness of the loop. As there are 4 loops sharing the load, the stiffness is 1.34 times the on-axis 
stiffness. 

Recalling that the loops are as stiff in compression as they are in tension, as long as their preload is not 
exceeded, the analysis for X axis and Y axis loading is identical. Therefore, this arrangement yields 
symmetric X, Y and Z stiffnesses at the mount. The natural frequency in X and Y will be higher than that 
in Z, because the aft end suspension will also be resisting translations of the salt pill in those axes. 

When seen from above (Fig. 1 l), the projection of the lines of action of opposing locating loops onto the X- 
Y plane are separated , so the assembly can resist a torque. The angle the loops make with the X-Y plane is 
35.3'. The perceived stiffness of one loop is then co~~(35.3")  = .67 times the stiffness of one strap along its 
axis. The perceived stiffness times the spacing between the projections of the lines of action yields the 
rotational stiffness. 
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Fig. 11: The top end suspension as viewed from above. Since the lines of action of 
loops A and B do not pass through a point, this arrangement will resist rotations 
about the salt pill axis. The lines of action of the suspension loops pass through the 
centers of the supporting dowels. 

When viewed from the front (Fig. 9), it can be seen that the suspension system might be unstable: if the 
lines of action of the positioning loops were to intersect at a point above the tensioning loop's rotation point 
(the point that the tensioning loop pivots around when rotating in the plane of the page for Fig. 9), then a 
rotation of the suspended mount plate would reduce the tension in all loops, and the configuration would be 
unstable. Conversely, if the lines of action were to intersect too far below the rotation point, the restoring 
torque for a small rotational deflection would be too great, and this required degree of freedom would be 
lost. The best performance is when the lines of action cross right at the rotation point (exactly where this is 
depends on the details of the design of the dowel, whether it has a groove for the cord, etc.). Small angular 
deflections engender no restoring torque, and large deflections can be shown to move the intersection point 
of the lines of action downward, making the mount intrinsically stable. This is important for tensioning the 
assembly apart from the rest of the ADR. 

3.2 The Bottom End 
The bottom end suspension system (Fig. 12) is a 1-1-1 DOC mount, with the mount points at 120' 
intervals. The analysis is the same as that for a 2-2-2 kinematic mount (Fig. 5), except there are no Z-axis 



constraints. Three 1 -DOC tensile mounts (Fig.3) are used. The Kevlar used here is woven cord. The rigid 
end of the cord is wrapped around a capstan. The cord then passes around a pulley and terminates in a 
loop, which is made by passing the free end of the cord back into the weave. Cortland Cable [6] provides 
the cords with the loops already in place. A dowel similar to those used in the top end connects this loop to 
a yoke, which passes the preload to the cord from the tensioning spring. The preload tension is adjusted 
with a nut. For assembly, the suspended spider is held in the correct position with a jig and then glued to 
the three tensioned cords using Stycast, to keep residual stresses to a minimum. X and Y translations are 
resisted by tensions along the length of the cord, but Z translations, and X and Y rotations, are relatively 
unconstrained. 

Suspended spider 

Fig. 12: The bottom end suspension. 

The bottom end mount would provide a constraint to Z-axis rotation, which would conflict with the similar 
constraint at the top end, except that where the suspended spider engages the spindle in the bottom of the 
ADR cavity, it is free to rotate. This yields the desired two degrees of constraint illustrated in Fig. 6. To 
prevent rattling at this joint, the hole in the aluminum spider is made with a very close fit to the titanium 
spindle. When the instrument is cooled, differential contraction causes the spider to clamp down on the 
spindle, after it has found its rotational neutral position, and a rigid joint is formed. Chamfers on the hole 
and the spindle ensure that, during insertion, the spindle mates with the hole at the maximum misalignment 
allowed by the ADR cavity. 

4. CRYOGENIC TESTING 
The ADR was tested at both the component and assembly levels. From a project perspective, the goal was 
to demonstrate that the ADR assembly met the hold time, recycle time, and temperature stability 
requirements for both HAWC and SAFIRE. From an engineering perspective, it was important to measure 
the characteristics of each component so that any discrepancies between predicted and actual performance 
of the assembly could be traced to individual components. 

Although the HAWC and SAFIRE ADR assemblies are identical, differences in their operating parameters 
required individual tests to verify top-level performance. The most notable difference is that the HAWC 
ADR operates from an unpumped 4.2 K helium bath, while for SAFIRE the bath is pumped to 
approximately 1.3 K. The HAWC ADR therefore required a larger magnetic field (approximately 4.5 T) to 
drive the refrigeration cycle than the SAFIRE ADR (2 T), and was potentially subject to non-negligible 
heat loads from 4.2 K radiation. 

Component level tests were performed for the magnets, thermal straps (which provide a somewhat flexible 
thermal link between the salt pill and heat switch) and heat switches. For this discussion we focus only on 
the latter since the main parasitic heat leaks to the salt pill during operation are the heat switch and Kevlar 
suspension systems - the wiring heat loads are negligible. Ideally the two Kevlar suspension units for each 




